Κορονοϊός: Πώς μολύνει τα κύτταρα – Γιατί η μετάλλαξη Δέλτα είναι τόσο μεταδοτική
Οι επιστήμονες έχουν πλέον στα χέρια τους την αναλυτική περιγραφή του τρόπου με τον οποίο ο κορονονοϊός Covid 19 (SARS-CoV-2) εισβάλλει στα ανθρώπινα κύτταρα. Επικεντρώνοντας στη διαδικασία της μόλυνσης, ελπίζουν να βρουν καλύτερους τρόπους για να την ανακόψουν μέσω βελτιωμένων θεραπειών και εμβολίων και να μάθουν γιατί τα πιο πρόσφατα στελέχη, όπως η μετάλλαξη Δέλτα, είναι πιο μεταδοτικά.
Οι Καθηγητές της Θεραπευτικής Κλινικής της Ιατρικής Σχολής του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών, Ευστάθιος Καστρίτης, Θεοδώρα Ψαλτοπούλου και Θάνος Δημόπουλος (Πρύτανης ΕΚΠΑ) παρουσιάζουν τα κύρια σημεία σχετικής δημοσίευσης από το περιοδικό Nature.
H ανατομία των μεταλλάξεων του κορονοϊού
Οι παραλλαγές – μεταλλάξεις του Covid 19 (SARS-CoV-2) που προκαλούν ιδιαίτερη ανησυχία τείνουν να εμφανίζουν μεταλλάξεις στην υπομονάδα S1 της πρωτεΐνης ακίδα, η οποία φιλοξενεί την περιοχή RBD και είναι υπεύθυνη για τη σύνδεση στον υποδοχέα ACE2. (Μια δεύτερη υπομονάδα της ακίδας, η S2, συμβάλλει στην σύντηξη του περιβλήματος του ιού με τη μεμβράνη του κυττάρου ξενιστή.)
Η μετάλλαξη Άλφα, για παράδειγμα, περιλαμβάνει δέκα αλλαγές στην αλληλουχία της πρωτεϊνης-ακίδας, οι οποίες έχουν ως αποτέλεσμα η RBD να είναι πιο πιθανό να παραμείνει σε θέση που βοηθά τον ιό, διευκολύνοντας την είσοδό του στα κύτταρα.
Η μετάλλαξη Δέλτα η οποία τώρα εξαπλώνεται ταχύτατα, φιλοξενεί πολλαπλές μεταλλάξεις στην υπομονάδα S1, συμπεριλαμβανομένων τριών στην περιοχή της RBD που φαίνεται να ενισχύουν την ικανότητα της RBD να συνδέεται με τον υποδοχέα ACE2 και να παρακάμπτει το ανοσοποιητικό σύστημα.
Μόλις οι ακίδες του ιού συνδέονται με τον υποδοχέα ACE2, άλλες πρωτεΐνες στην επιφάνεια του κυττάρου-ξενιστή ξεκινούν μια διαδικασία που οδηγεί στη σύντηξη του περιβλήματος του ιού και της κυτταρικής μεμβράνης. Ο ιός που προκαλεί τον SARS, ο SARS-CoV, χρησιμοποιεί ένα από τα δύο ένζυμα-πρωτεάσες (είναι ένζυμα που «κόβουν» άλλες πρωτεΐνες σε συγκεκριμένες θέσεις) του κυττάρου-ξενιστή για να εισβάλλει: την TMPRSS2 ή την καθεψίνη L. Η TMPRSS2 είναι η ταχύτερη διαδρομή, αλλά ο SARS-CoV εισέρχεται συχνά μέσω ενός ενδοσώματος – μιας φυσαλίδας που περιβάλλεται από λιπίδια – η οποία βασίζεται στην καθεψίνη L. Ωστόσο, όταν οι ιοί εισέρχονται στα κύτταρα με αυτόν τον τρόπο, οι αντιιϊκές πρωτεΐνες μπορούν να τους παγιδέψουν.
Διαφορές από άλλους κορονοϊούς
Ο SARS-CoV-2 διαφέρει από τον SARS-CoV στο ότι χρησιμοποιεί πιο αποτελεσματικά την TMPRSS2, ένα ένζυμο που βρίσκεται σε μεγάλες συγκεντρώσεις στην επιφάνεια των κυττάρων του αναπνευστικού επιθηλίου. Πρώτον, η TMPRSS2 κόβει μια θέση στη υπομονάδα S2 και έτσι εκθέτει μια σειρά υδρόφοβων αμινοξέων που εισδύουν γρήγορα στην πλησιέστερη μεμβράνη: αυτή του κυττάρου ξενιστή. Η προτεταμένη ακίδα στη συνέχεια διπλώνεται πάνω της, σαν φερμουάρ, οδηγώντας στην σύντηξη του περιβλήματος του ιού και της κυτταρικής μεμβράνης.
Ο ιός στη συνέχεια εκτοξεύει το γονιδίωμά του (το γενετικό του υλικό) απευθείας στο κύτταρο. Εισβάλλοντας με αυτόν τον τρόπο, σαν ελατήριο, ο SARS-CoV-2 μολύνει τα κύτταρα ταχύτερα από τον SARS-CoV και αποφεύγει να παγιδευτεί σε ενδοσώματα.
Γιατί δεν λειτούργησε η χλωροκίνη
Η ταχεία είσοδος του ιού χρησιμοποιώντας την TMPRSS2 εξηγεί γιατί η χλωροκίνη δεν λειτούργησε σε κλινικές δοκιμές ως θεραπεία για την COVID-19, παρά τις πρώτες ελπιδοφόρες εργαστηριακές μελέτες. Οι εργαστηριακές μελέτες χρησιμοποιούσαν κύτταρα που χρησιμοποιούσαν αποκλειστικά την καθεψίνη για είσοδο του ιού μέσω ενδοσωματων. Όταν ο ιός μεταδίδεται και αναπαράγεται στον ανθρώπινο αναπνευστικό επιθήλιο, δεν χρησιμοποιεί ενδοσώματα, οπότε η χλωροκίνη, η οποία είναι ένα φάρμακο που αναστέλλει τα ενδοσώματα, δεν είναι αποτελεσματική.
Πώς ο κορονοϊός εισβάλλει στον ανθρώπινο οργανισμό
Οι επιστήμονες ανακάλυψαν κρίσιμες προσαρμογές του ιού που τον βοηθούν να αγκιστρωθεί στα ανθρώπινα κύτταρα με εκπληκτική δύναμη και στη συνέχεια να κρυφτεί μόλις εισβάλει μέσα στο κύτταρο. Αργότερα, καθώς βγαίνει από τα κύτταρα, ο Covid 19 (SARS-CoV-2) εκτελεί μια κρίσιμη διεργασία ώστε να προετοιμάσει τα νέα σωματίδια του ιού για τη μόλυνση ακόμη περισσότερων ανθρώπινων κυττάρων.
Αυτά είναι μερικά από τα εργαλεία που επέτρεψαν στον ιό να εξαπλωθεί τόσο γρήγορα και γι’ αυτό είναι τόσο δύσκολο να ελεγχθεί και ανασκοπούνται σε μια δημοσίευση στο υψηλού κύρους περιοδικό Nature. Οι Καθηγητές της Θεραπευτικής Κλινικής της Ιατρικής Σχολής του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών, Ευστάθιος Καστρίτης, Θεοδώρα Ψαλτοπούλου και Θάνος Δημόπουλος (Πρύτανης ΕΚΠΑ) παρουσιάζουν τα κύρια σημεία της δημοσίευσης.
Kρίσιμες προσαρμογές του ιού τον βοηθούν να αγκιστρωθεί στα ανθρώπινα κύτταρα με εκπληκτική δύναμη και στη συνέχεια να κρυφτεί μόλις εισβάλει μέσα στο κύτταρο. Αργότερα, καθώς βγαίνει από τα κύτταρα, ο Covid 19 (SARS-CoV-2) εκτελεί μια κρίσιμη διεργασία ώστε να προετοιμάσει τα νέα σωματίδια του ιού για τη μόλυνση ακόμη περισσότερων ανθρώπινων κυττάρων.
O νέος κορoνοϊός SARS-CoV-2 διαθέτει ένα κάλυμμα από σάκχαρα όπως δείχνουν οι προσομοιώσεις του στον υπολογιστή, και πιο συγκεκριμένα στις πρωτεΐνες-ακίδες, οι οποίες ξεχωρίζουν στην επιφάνεια του. Τα μόρια αυτά του σακχάρου είναι γνωστά ως γλυκάνες. Πολλοί ιοί έχουν γλυκάνες που καλύπτουν τις εξωτερικές τους πρωτεΐνες, και τις καμουφλάρουν αποκρύπτοντας τις από το ανοσοποιητικό σύστημα.
Λεπτομερής απεικόνιση της εισβολής του Covid 19 στο ανθρώπινο σώμα
Ερευνητές δημιούργησαν μια λεπτομερή απεικόνιση αυτού του καλύμματος βασισμένη σε δομικά και γενετικά δεδομένα που τελικά ανασυντέθηκε άτομο προς άτομο από έναν υπερυπολογιστή, δίνοντας μια εξαιρετικά λεπτομερή απεικόνιση. Μέσα από το κάλυμμα αυτό όμως ξεχωρίζει ένας μη επικαλυμμένος βρόχος ο οποίος είναι ένα τμήμα της πρωτεΐνη ακίδας που αποτελεί τον τομέα δέσμευσης του υποδοχέα (RBD), ένα από τα τρία τμήματα της ακίδας που συνδέονται με τους υποδοχείς ACE2 στα ανθρώπινα κύτταρα.
Στην προσομοίωση, όταν ο RBD προβάλλει πάνω από το κάλυμμά των σακχάρων, δύο άλλα μόρια γλυκάνης λαμβάνουν μια θέση που κλειδώνει τον RBD στη θέση του, στηρίζοντας τον. Όμως τα μοντέλα προσομοίωσης έδειξαν ότι εάν αλλάξουν αυτές οι γλύκανες τότε η RBD καταρρέει.
Στις μεταλλαγές γλυκανών η μείωση της μολυσματικότητας του ιού;
Μια άλλη ερευνητική ομάδα ανέπτυξε μια τεχνική για να δοκιμάσει το ίδιο πείραμα στο εργαστήριο και μέχρι τον Ιούνιο του 2020, διαπίστωσαν ότι μεταλλαγές των δύο γλυκανών μείωσαν την ικανότητα της πρωτεΐνης – ακίδας να συνδέεται με τον υποδοχέα ACE2 των ανθρώπινων κυττάρων. Αυτό το εύρημα δεν είχε περιγραφεί προηγουμένως σε κορονοϊούς. Πιθανόν, η απόρριψη αυτών των δύο σακχάρων θα μπορούσε να μειώσει τη μολυσματικότητα του ιού, αν και οι ερευνητές δεν έχουν ακόμη τρόπο να το κάνουν αυτό.
«Κλειδί» οι πρωτεΐνες ακίδες
Κάθε σωματίδιο κορονοϊού SARS-CoV-2 έχει μια εξωτερική επιφάνεια με 24 – 40 τυχαία διατεταγμένες πρωτεΐνες-ακίδες που είναι το κλειδί για τη σύνδεση με τα ανθρώπινα κύτταρα. Για άλλους τύπους ιών, όπως της γρίπης, οι εξωτερικές πρωτεΐνες σύνδεσης/σύντηξης είναι σχετικά άκαμπτες. Ωστόσο, οι ακίδες του SARS-CoV-2 είναι εξαιρετικά ευέλικτες και αρθρώνονται σε τρία διαφορετικά σημεία. Αυτό επιτρέπει στις ακίδες να περιστρέφονται και να ταλαντεύονται, γεγονός που διευκολύνει τη σάρωση της επιφάνειας του κυττάρου και την ταυτόχρονη σύνδεση πολλών αιχμών σε ένα ανθρώπινο κύτταρο. Δεν υπάρχουν παρόμοια πειραματικά δεδομένα για άλλους κορονοϊούς, αλλά επειδή οι αλληλουχίες πρωτεϊνών-ακίδων εμφανίζονται διατηρημένες στην εξέλιξη των κορωνοϊών, μάλλον πρόκειται για κοινό χαρακτηριστικό των ιών της οικογένειας αυτής.
Στην αρχή της πανδημίας, οι ερευνητές επιβεβαίωσαν ότι η περιοχή RBD της πρωτεΐνης ακίδας του SARS-CoV-2 συνδέεται με τον υποδοχέα ACE2, που βρίσκεται στο εξωτερικό πολλών κυττάρων του ανωτέρου αναπνευστικού και των πνευμονικών κυττάρων. Αυτός ο υποδοχέας είναι επίσης το σημείο σύνδεσης του SARS-CoV, του ιού που προκαλεί σοβαρό οξύ αναπνευστικό σύνδρομο (SARS). Όμως, σε σύγκριση με τον SARS-CoV, εκτιμάται ότι ο SARS-CoV-2 συνδέεται με το ACE2 2-4 φορές πιο ισχυρά, επειδή αρκετές αλλαγές στην περιοχή RBD σταθεροποιούν τα σημεία σύνδεσης του ιού.